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Abstract With compelling evidence that half the world’s

coral reefs have been lost over the last four decades, there

is urgent motivation to understand where reefs are located

and their health. Without such basic baseline information,

it is challenging to mount a response to the reef crisis on

the global scale at which it is occurring. To combat this

lack of baseline data, the Khaled bin Sultan Living Oceans

Foundation embarked on a 10-yr survey of a broad selec-

tion of Earth’s remotest reef sites—the Global Reef

Expedition. This paper focuses on one output of this

expedition, which is meter-resolution seafloor habitat and

bathymetry maps developed from DigitalGlobe satellite

imagery and calibrated by field observations. Distributed

on an equatorial transect across 11 countries, these maps

cover 65,000 sq. km of shallow-water reef-dominated

habitat. The study represents an order of magnitude greater

area than has been mapped previously at high resolution.

We present a workflow demonstrating that DigitalGlobe

imagery can be processed to useful products for reef con-

servation at regional to global scale. We further emphasize

that the performance of our mapping workflow does not

deteriorate with increasing size of the site mapped.

Whereas our workflow can produce regional-scale benthic

habitat maps for the morphologically diverse reefs of the

Pacific and Indian oceans, as well as the more depauperate

reefs of the Atlantic, accuracies are substantially higher for

the former than the latter. It is our hope that the map

products delivered to the community by the Living Oceans

Foundation will be utilized for conservation and act to

catalyze new initiatives to chart the status of coral reefs

globally.

Keywords Coral reef � Global Reef Expedition � Remote

sensing � Habitat maps � Bathymetry � Accuracy assessment

Introduction

Humans have been damaging reefs since they first started

to interact with them (e.g., Pandolfi et al. 2003; McCle-

nachan et al. 2017), but it is only in the last 40 yrs, or so,

that impacts such as overfishing, pollution, and climate

change have precipitated their global collapse (Jackson

et al. 2001; Bellwood et al. 2004). Targeted intervention

can reverse this demise using tools ranging from marine

protected areas to reef restoration, but to be effective, it is

necessary to understand the location of Earth’s reefs and

their status. For this reason, there is a compelling urgency

to generate public-domain reef maps to guide effective

coral reef conservation. Between 2006 and 2015, the

Khaled bin Sultan Living Oceans Foundation under the

auspices of their Global Reef Expedition (hereafter

‘KSLOF-GRE’) completed field research for one of the
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largest coral reef studies in history, visiting a global tran-

sect of remote shallow-water reef sites (Fig. 1). The pri-

mary goals of the GRE were to map and characterize coral

reef ecosystems, identify their status and major threats,

examine factors affecting their resilience, and to promote

local and regional conservation efforts through data shar-

ing, outreach, and education. A key stipulation of the

endeavor was that the Living Oceans Foundation was

invited by each host nation into their territorial waters. By

operating under invitation, it was deemed that the chances

of nourishing local conservation efforts would be maxi-

mized. Further to this aim, every effort was made to

include local scientists, managers, educators, as well as

representatives from not-for-profit organizations, as part of

the shipboard party. Many of these efforts have been

described in high-level post-cruise reports (e.g., Bruckner

et al. 2016; Purkis et al. 2017, 2018), documentary films

(e.g., Barrat 2013, 2014, 2015, 2016), and scientific papers

(see bibliography at www.livingoceansfoundation.org/pub

lications/scientific-articles—accessed 11/27/2018). With

the exception of the Red Sea surveys (Bruckner et al.

2011), however, little has been published on the methods

used or accuracy of the KSLOF-GRE remote sensing

products. Such is the overall purpose of this paper.

The KSLOF-GRE employed remotely sensed imagery

along with contemporaneous field data to produce both

Fig. 1 a–j Location of the sites visited on the Khaled bin Sultan

Living Oceans Foundation Global Reef Expedition where habitat and

bathymetric maps were produced. Red polygons emphasize extent of

mapping and encompass a total area of 65,000 sq. km of habitat

situated shallower than 25 m water depth. Accompanying site names

in red also. GBB in e abbreviates Great Bahama Bank. North is top in

all maps; scales as noted
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habitat maps and bathymetry at 2 m spatial resolution over

an area of 65,000 sq. km. This area corresponds to coral

reefs found in water shallower than 25 m. The completed

work reflects the remarkable increase in accuracy of

satellite-derived reef maps over the past 20 yrs and repre-

sents an important milestone toward mapping all of Earth’s

reefs at meter-scale spatial resolution.

Early remote sensing studies of coral reefs used gov-

ernment-operated sensors such as Landsat (e.g., Ahmad

and Neil 1994; Andréfouët et al. 2001; Purkis et al. 2002;

Naseer and Hatcher 2004) or SPOT (Satellite Pour l’Ob-

servation de la Terre; Loubersac et al. 1991; Capolsini

et al. 2003). Although the 20–30 m pixel sizes of those

sensors were considered high resolution for the time and

were adequate to give the gist of seabed character, results

using those data were incapable of capturing the hetero-

geneity of a typical reef environment as it would be

experienced in situ. This shortcoming was largely over-

come with the launch of IKONOS with 4 9 4 m pixels in

the visible spectrum in 2000, followed by QuickBird with

2.4 9 2.4 m pixels in 2001, both of which were swiftly

assigned to mapping reefs, albeit over areas of just a few

hundred square kilometers (Andréfouët et al. 2003; Purkis,

2005; Hernández-Cruz et al. 2006; Purkis et al. 2006;

Rowlands et al. 2008). More recent progress has been

incremental and led by the WorldView series of satellites

which offer visible-spectrum spatial resolutions between 1

and 2 m, two orders of magnitude smaller pixels than

Landsat or SPOT of a generation ago. Beyond enhanced

spatial resolution, the WorldView program delivers data in

eight spectral bands, of which five are water penetrating,

facilitating improved separation of seabed types and more

accurate bathymetry derivation (Collin and Hench 2012;

Goodman et al. 2013; Roelfsema et al. 2014, 2018; Glynn

et al. 2015; Hedley et al. 2016; Warren et al. 2016; Kerr

and Purkis 2018; Purkis 2018).

Although orbital sensors are now able to image Earth

with spatial and spectral resolutions that could only be

achieved using aircraft a decade ago, it is only recently that

reef-mapping projects have started to tackle regional

scales, as opposed to individual or small collections of

reefs at specific locations. Computational limitations

somewhat explain this local focus; regional image datasets

are large and laborious to classify, not to mention com-

plicated by broad variations in environmental conditions,

such as tides, waves, and water clarity. The lack of research

funds allocated to global mapping projects is an equal

culprit, however. A small number of reef-mapping pro-

grams have, nevertheless, made the important jump to

regional audits suitable for countrywide marine spatial

planning initiatives. These programs can be categorized as

to whether they deliver maps at Landsat-type resolution—

that is, with minimum mapping units (MMUs) measured in

hundreds of square meters—versus WorldView-type reso-

lution, which is at least one order of magnitude finer.

There have been two regional-scale reef-mapping pro-

grams in the first category (Landsat-scale spatial resolu-

tion). First was the Biogeography Reef-Mapping Program

of the US National Oceanic and Atmospheric Adminis-

tration (NOAA) which was limited to US territorial waters

and tendered at the minimum mapping unit of 1000 m2

(Monaco et al. 2012). Second, and of similar resolution

because it was developed from Landsat imagery, was the

near-global reef database compiled by the United Nations

Environmental Programme-World Conservation Monitor-

ing Center (UNEP-WCMC). The Millennium Coral Reef-

Mapping Project (Andréfouët et al. 2006) was the dominant

constituent here.

There have also been two regional-scale reef-mapping

programs in the second category (meter-scale spatial res-

olution). The first program to deliver meter-resolution reef

maps at regional scales was the KSLOF-GRE and is the

focus of this paper. The second program in this category is

a recently launched initiative called the Allen Coral Atlas

(www.allencoralatlas.com—accessed 03/07/2019). This

endeavor aims for global coverage, is funded by Microsoft

co-founder and philanthropist Paul Allen, and is utilizing

satellite imagery provided by Planet Labs. The methods

employed are based on work by Roelfsema et al. (2018) in

the Great Barrier Reef. To date, the Allen Coral Atlas has

completed various reef globally, including Heron Island

(Australia), Karimunjawa (Indonesia), Kayankerni Reef

(Sri Lanka), Moorea (French Polynesia), Lighthouse Reef

(Belize), and West Hawai’i (USA.). All these data are

accessible through the project’s Web portal—www.allen

coralatlas.com/atlas (accessed 03/11/2019). The KSLOF-

GRE builds forward from earlier programs by providing

coverage of much of Earth’s major reef provinces, as

accomplished by the Millennium Mapping Program, but at

meter scale. Furthermore, the work conducted by KSLOF

through the GRE might be considered as complimentary to

new initiatives, such as the Allen Coral Atlas, by providing

insight as to how field assessments and benthic habitat

mapping can be scaled regionally.

Global Reef Expedition

The KSLOF-GRE simultaneously examined reef geomor-

phology, habitat, and satellite-derived bathymetry. Bathy-

metry is traditionally partnered with habitat maps because

it has been demonstrated to hold predictive power over

several ecologically important aspects of the reef system,

such as the use of rugosity to forecast the diversity and

biomass of reef fish (Purkis et al. 2008; Mellin et al. 2009;

Knudby et al. 2011). Bathymetry maps are also the primary
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input to the calculation of local hydrodynamic exposure

(e.g., Purkis et al. 2012a, b; Callaghan et al. 2015).

The underlying philosophy of the KSLOF-GRE was to

marry meter-resolution remote sensing and ground verifi-

cation with traditional field surveys of reefs, such as those

which have been continuously developed since 1998 by the

Atlantic and Gulf Rapid Reef Assessment (AGRRA) Pro-

gram (Ginsburg et al. 2000). AGGRA, and its expansive

partner network, provides a standardized assessment of key

structural and functional indicators that can be applied to

reveal spatial and temporal patterns of reef condition.

Based on a modified version of the AGRRA protocols, the

KSLOF-GRE used SCUBA-diver surveys to systematically

collect data at multiple depths for all visited sites to

quantify, at a minimum, live coral and algal cover, as well

as reef fish biomass and diversity.

From 2006 through 2009, the KSLOF-GRE operated

along the Red Sea coastline of the Kingdom of Saudi

Arabia during which four cruises were accomplished for

the purpose of developing and refining the field and remote

sensing protocols which would later be deployed globally.

In this initial phase, reef geomorphology as it pertains to

reef resilience was examined (Hamylton 2011; Riegl et al.

2012; Rowlands et al. 2014, 2016; Rowlands and Purkis

2015) alongside the sedimentology and Pleistocene devel-

opment of the Red Sea (Purkis et al. 2010, 2015).

Approximately 32,000 sq. km of shallow-water (\ 25 m

water depth) reef habitat and bathymetry were mapped

from satellite and aircraft data (Fig. 1f), work which was

summarized in a marine atlas of the Red Sea (Bruckner

et al. 2011), a format which would later also be used to

disseminate geographic products for the KSLOF-GRE. All

of these data can be viewed on the interactive Living

Oceans Foundation GIS Data Portal (https://maps.lof.org/

lof—accessed 11/7/2018). Since it has already been pub-

lished on extensively, the Red Sea component of the GRE

is not the focus of this study and will not be considered

further.

KSLOF-GRE surveys from 2011 to 2015 used a stan-

dardized survey protocol to collect baseline data on reef

extent, habitat distribution, and health using a combination

of diver, satellite, and other observations.

The aims of this paper are fourfold:

1. To emphasize the economies of scale that can be

achieved by object-based interpretation of Digi-

talGlobe satellite data.

2. To highlight trends and patterns in error for the

delineation of benthic habitats from orbit across

diverse reef geomorphologies, seafloor types, water

depths, and environmental settings.

3. To initiate a public repository of coral reef maps

generated at appropriate scales to support regional-

scale marine spatial planning initiatives.

4. To promote awareness of the KSLOF-GRE map

products and initiate their widespread usage by the

community.

Methods

Diver surveys for training data

The field component of the KSLOF-GRE was conducted

between 2006 and 2015, and Table 1 provides an overview

of the quantity of data acquired by country visited. For

each of the 1000 individual reefs visited, the benthic cover

of major functional groups and substrate type were asses-

sed along 10 m transects using both diver-recorded

observations, point-intercept counts, and photographic

assessments. A minimum of four transects were completed

at each dive site, and surveys were completed at 25, 20, 15,

10, and 5 m water depths. Via these methods, the following

parameters were quantified: corals identified to genus,

other sessile invertebrates identified to phylum or class, and

six functional groups of algae. Reef fish surveys were also

conducted at each dive site at depths stratified between 5

and 20 m via visual census as described by English et al.

(1997). For more detail, the reader is directed to the

Foundation’s Field and Final Country Reports which are

available online (www.livingoceansfoundation.org/publica

tions/final-reports/—accessed 03/11/2019). These reports

contain exhaustive lists of all sites and survey protocols.

Diver-collected data were used to aid in the definition of

map classes, as described in ‘‘Definition of habitat map

classes’’ section. In addition, the dominant habitat type was

extracted from each dive site to serve as labeling (training)

data for satellite mapping, as described in ‘‘Level 4 bio-

logical cover and Level 5 habitat maps’’ section. A total of

1240 dive sites across the KSLOF-GRE were treated in this

way. This number of dives equates to approximately

15,000 hours of underwater data collection achieved by the

[ 200 scientists involved in the expedition.

Small-vessel surveys for training and validation data

A small vessel was used to collect several datasets at each

of the * 1000 visited reef sites. A total of 30-million tide-

corrected single-beam sonar soundings were acquired

throughout the KSLOF-GRE. These measurements were

used to create the bathymetry maps (‘‘Satellite-derived

bathymetry maps’’ section). Additional ground-truth data

were collected in the form of 2000 surficial sediment
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samples and 150 linear km of low-fold subbottom geo-

physical profiles obtained with a 5 kHz SyQwest Stratabox

subbottom profiler—protocols for each detailed by Purkis

et al. (2014). These datasets were used in conjunction with

the diver data just described to help define habitat classes

and segment geomorphological structures (‘‘Definition of

habitat map classes’’ and ‘‘Development of habitat maps’’

sections).

A total of 11,000 seabed videos were captured across all

sites via a tethered SeaViewer ‘drop’ camera integrated

with a differential global positioning system (dGPS). This

video system allowed seabed observations to be obtained

from the intertidal to approximately 50 m water depth at a

frequency far exceeding that achievable via SCUBA. The

drop camera videos were analyzed in the laboratory and

used for map validation (‘‘Accuracy assessment’’ section).

WorldView-2 satellite imagery

The KSLOF-GRE employed the DigitalGlobe Inc.

WorldView-2 (WV2) satellite to image each visited reef

site. The instrument images in eight multispectral bands

with pixel widths of 1.85 m for images acquired with look

angles \ 20� off-nadir coarsen to 2.07 m for look angles

exceeding 20�. Pixel brightness values are digitally enco-

ded with 11-bit radiometric resolution. WV2 is particularly

adept at imaging the shallow seabed since five of the eight

spectral bands are of sufficiently short wavelength to have

meaningful penetration in water—these five are the coastal

blue band (400–450 nm), blue (450–510 nm), green

(510–580 nm), yellow (585–625 nm), and red (630 -

690 nm). Experience across the KSLOF-GRE suggested

that under ideal conditions, the seabed could routinely be

imaged for habitat mapping down to water depths of 25 m.

The tropics are often cloudy and therefore challenging to

image. To address this difficulty, at least eight months prior

to each of the 15 field missions, the WV2 was tasked to

acquire imagery at look angles\ 15� off-nadir to minimize

sun glint. At 1 month prior, all acquired imagery was

purchased from DigitalGlobe Inc. and assembled to support

mission planning and subsequent fieldwork. If insufficient

cloud-free data had been obtained for mapping a given

country, the sensor was tasked for an additional two-month

post-cruise, to fill areas that remained stubbornly cloud

contaminated. In this way, the majority of imagery was

acquired within four months of fieldwork, but with a

maximum differential of eight months. For large sites, such

as the 6000 sq. km Cay Sal Bank (Bahamas—Fig. 1e), up

to 50 individual WV2 acquisitions were assembled to

deliver an image mosaic with \ 3% cloud cover, which

was the threshold deemed as the maximum tolerable for

mapping. In many cases, cloud cover was further reduced

by replacing individual cloud-contaminated areas with a

portion of a cloud-free acquisition from an alternative date

and equivalent tidal state, a process termed ‘cloud patch-

ing.’ Adjacent image scenes were selected to have a similar

tidal state and equivalent water clarity.

Prior to mosaicking the individual scenes, each was

processed to units of above-water remote sensing reflec-

tance, which encompasses radiometric, solar geometry, and

atmospheric correction, as described in detail by Kerr and

Purkis (2018) and corrected for sun glint following Hedley

et al. (2005). At this point, the processed satellite scenes

were stitched into a mosaic using the image-processing

Table 1 By-country summary of the field component of the Global Reef Expedition

Country Fieldwork

conducted

Area of coral reef mapped

(sq. km)

Number of drop camera

videos

Number of single-beam

soundings

Number of dive

sites

Red Sea 2006–2009 31,419 1759 2,711,903 164

Bahamas 2011 7801 1054 1,928,148 172

Colombia 2012 1103 446 364,771 69

BIOT 2015 3951 1205 4,459,966 115

Solomon 2014 2965 962 3,458,261 69

New

Caledonia

2013 3024 1218 3,142,899 76

Galápagos 2012 1030 593 1,258,413 54

Fiji 2013 2542 987 3,037,823 91

French

Polynesia

2012–2013 7802 1645 8,650,690 283

Cook 2013 1100 596 1,055,627 65

Tonga 2013 2322 724 1,602,931 82

Totals 65,059 11,189 31,671,432 1240
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software ENVI (v. 5.4, Harris Geospatial Inc.), emergent

areas identified using a threshold in the 860–1040 nm

spectral band, and areas of deepwater identified also,

defined as having \ 5% reflectance in the 450–510 nm

band (Fig. 2a). The remainder of the imagery was con-

sidered as potentially containing shallow-water habitat,

defined as\ 25 m water depth, and was passed forward to

the mapping workflow (Fig. 2b–d).

Satellite-derived bathymetry maps

Bathymetry maps were derived for all the KSLOF-GRE

sites via spectral derivation of water depth from WV2

satellite imagery (workflow detailed in Fig. 2b). These

products served as stand-alone data layers, but were also

utilized in the habitat-mapping workflow to partition each

reef site into zones, which in turn were populated with a

zone-specific suite of habitat classes. Stumpf et al. (2003)

offer the most widely adopted empirical algorithm for

extracting bathymetry from multispectral imagery. This

solution uses a ratio of reflectance from two spectral bands

which is tuned against known water depths to yield a

bathymetry map. Motivated by the fact that this method

does not exploit all five water-penetrating bands of WV2

and its successors, Kerr and Purkis (2018) evolved the

algorithm via multi-linear regression of five bands, a

solution which provided enhanced estimates of water

depth. Their algorithm allowed viable bathymetric models

Fig. 2 Workflow for the production of bathymetry and benthic

habitat maps. a Image preparation encompassed correction for solar,

radiometric and atmospheric effects, and, if required, correction for

sun glint also. Sites imaged by multiple satellite scenes were stitched

into a seamless mosaic once these corrections had been implemented.

The resulting mosaic was processed to yield a bathymetry map which

was calibrated by sonar depth soundings (b). Via manipulation in

eCognition software, the bathymetry map was used to create a map of

reef zonation which was then combined with the multispectral image

mosaic via hierarchical classification to yield a map of seabed habitat

(c)—text for details. Finally, the accuracy of the habitat map was

computed with reference to drop camera videos acquired in the field

(d)
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to be derived even in cases where ground truth via sonar

was limited, and, under ideal conditions, even absent.

Mapping of water depth for the KSLOF-GRE sites fol-

lowed the Kerr and Purkis (2018) methodology and was

calibrated by the sonar soundings described in ‘‘Small-

vessel surveys for training and validation data’’ sec-

tion. Bathymetry maps were masked below the 25-m-depth

contour, as derived from sonar soundings.

Definition of habitat map classes

The KSLOF mapping endeavor built forward from two

noteworthy regional-scale programs; the Millennium Coral

Reef-Mapping Project (Andréfouët et al. 2006) and the

NOAA Biogeography Reef-Mapping Program (Monaco

et al. 2012). Although our habitat map classes differed

from these predecessors, we adopted a hierarchical

scheme which allows for cross-comparison (as also done

by Roelfsema et al. 2018). The Landsat-derived maps of

Andréfouët et al. (2006) delineated reef geomorphology,

not habitat, though it was implied in many cases. For

instance, class ‘fore reef’ in the Andréfouët et al. (2006)

scheme describes location within the benthic system but,

importantly, does not address substrate or cover type at that

location. A fore reef environment can reasonably be

anticipated to be coral-dominated, however. The NOAA

effort (Monaco et al. 2012) also captured geomorphology,

termed ‘structure’ in their nomenclature, but developed two

additional map layers, ‘biological cover’ and ‘geographic

zone.’ The former described dominant biota (e.g., live

coral, seagrass, etc.), whereas the latter referred to the

location of the benthic community within the system (e.g.,

reef crest, back reef, etc.). Unlike NOAA, the KSLOF-

GRE products do not provide three map layers for each

area, but the classification scheme was hierarchically

arranged such that geomorphological structure, geographic

zone, and biological cover can be separated if required. As

described in ‘‘Development of habitat maps’’ section, this

cross-compatibility is implicit to the way that the maps are

created; a bathymetric map was initially interpreted into

geographic zones (termed the ‘Level 1’ output), which was

subsequently populated with increasing detail of geomor-

phological structure (Levels 2 and 3), before addition of

biological cover recorded in situ (Level 4), to produce a

final homologated Level 5 ‘habitat’ map in which zone,

structure, and cover are aggregated.

Fig. 3 Satellite-derived map products for O’Ua Island. a Location of

O’Ua Island in the Ha’apai Island Group, Kingdom of Tonga.

b Enhanced true-color WorldView-2 (WV2) image of O’Ua and

surrounding reef systems. c Bathymetry map created via spectral

derivation from the WV2 imagery calibrated by in situ sonar

soundings. d Corresponding habitat map developed via object-based

mapping in eCognition software. Colors in d correspond to those for

the Level 5 map classes in Table 2. North is top
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The combination of reef zone, geomorphological struc-

ture, and biotic cover resulted in 36 habitat classes used

across the Red Sea, Pacific, and Indian Oceans (Table 2).

In the Atlantic, the same scheme was used, but not all

combinations of zone, geomorphology, and cover were

found in this ocean basin; only 25 of the classes were

represented in the Atlantic maps. For example, there was

no difference defined between ‘lagoon’ and ‘back reef’ in

the Atlantic sites visited by the GRE. The description of

these classes should make intuitive sense based on their

zone, structure, and cover (Table 2), but there are also

lengthy descriptions and example photographs for each

class in the field reports previously published by KSLOF

(see, for example, Bruckner et al. 2016).

Development of habitat maps

The KSLOF-GRE used eCognition software (v. 5.2,

Trimble Inc.) to segment the WV2 imagery into polygons

that were then labeled by zone, structure, and ultimately

habitat class. In contrast to pixel-based classifiers, which

assign image pixels to map classes based on their spectral

content (Purkis and Klemas 2011), eCognition follows an

object-based approach (Knudby et al. 2011; Phinn et al.

2012; Purkis et al. 2012a, b, 2014; Roelfsema et al.

2013, 2014, 2018; Zhang et al. 2013; Warren et al. 2016).

In a workflow termed ‘hierarchical classification,’ edge-

detection routines are used to segment imagery into

eCognition ‘objects,’ which are precincts of the image set

with similar spectral and/or textural attributes. These

objects are subsequently assigned into one of several map

classes based on rules which consider spectral/textural

signatures, shape, and contextual relationships with sur-

rounding classes.

Whereas recent progress has been made to automate the

assignment of objects to map classes, such as by Saul and

Purkis (2015) using multinomial logistic discrete choice

models, we found the accuracy of the automated assign-

ments to be consistently lower than that delivered manually

by an expert user. For this reason, we elected to use manual

assignment of eCognition objects to map classes in our

workflow for the production of the KSLOF-GRE habitat

maps (Fig. 2). The workflow required four steps to handle

preprocessing of the satellite imagery, derivation of a

bathymetry map, development of a habitat map, and

accuracy assessment (Fig. 2a–d, respectively). This section

deals solely with developing the habitat map (Fig. 2c); the

other three steps are described in their corresponding

sections.

Level 1 zone map

A Level 1 zone map for each site was created using

eCognition by applying a multi-resolution segmentation

algorithm to the bathymetry map. This algorithm, because

it was described in detail by Baatz and Schäpe (2000), will

only be treated briefly here. The general concept of multi-

scale image segmentation is to subdivide an image set into

objects with spectral and/or textural homogeneity. The

solution proposed by Baatz and Schäpe (2000) considers

this task an optimization problem. In the first step, every

image pixel is considered a separate image object. Each

object is then visited iteratively and merged with its

neighbors to form larger (multi-pixel) objects. With each

iteration, the merging decision is based on local homo-

geneity criteria describing the similarity of adjacent image

objects. In a process similar to the annealing function

described by Purkis et al. (2012b), a cost function is

tracked as each merge is conducted and objects cease to be

further amalgamated at the point that the function ceases to

reduce.

To create the Level 1 map, the multi-resolution seg-

mentation was deployed on the bathymetry map, which has

pixel values enumerating water depth. Once segmented, an

expert user manually grouped the resulting image objects

that correspond to five reef zones (lagoon, back reef, fore

reef, reef crest, and shelf), plus two zones encompassing

terrestrial areas (land and intertidal), and deep ocean

(Table 2). The upshot of this process was a Level 1 zone

map.

Levels 2 and 3 geomorphological structure maps

The next step toward the final habitat map was the delin-

eation of geomorphological zones which were first crudely

defined (Level 2) and then refined in more detail (Level 3).

For the Level 2 map, the inputs were (a) the Level 1 reef

zone map produced from bathymetry and (b) the multi-

spectral WV2 image mosaic. First, for each Level 1 zone,

the multispectral imagery was segmented via the multi-

resolution method of Baatz and Schäpe (2000). Second, in

a process termed ‘labelling’ and with reference to the

surficial sediment samples and geophysical profiles

acquired in the field, the expert user manually selected

image objects and attributed them as belonging to one of

the three Level 2 geomorphology classes (unconsolidated

sediment, coral reef and hardbottom, or other; see Table 2).

bFig. 4 Satellite-derived map products for Gizo Island, Solomon

Islands. a Location of Gizo Island in the New Georgia Group.

b Enhanced true-color WorldView-2 (WV2) image of Gizo and

surrounding reef systems. c Bathymetry map created via spectral

derivation from the WV2 imagery calibrated by in situ sonar

soundings. d Corresponding habitat map developed via object-based

mapping in eCognition software. Colors in d correspond to those for

the Level 5 map classes in Table 2. North as indicated in a
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Third, based on these user-defined training sets for each

Level 2 class in each Level 1 zone, eCognition was used to

classify all of the objects in the image set into geomor-

phological structures based on spectral, textural, and

neighborhood parameters. The upshot of this process was a

map of major geomorphological structure primarily split

into unconsolidated sediment-dominated areas (spectrally

bright and texturally homogeneous) and coral reef and

hardbottom-dominated areas (spectrally dark and texturally

heterogeneous). Note that by conducting this process

independently within each Level 1 zone, the bias intro-

duced by varying bathymetry across the satellite imagery

was mitigated by the fact that each zone occupies a limited

range of water depths. This was important because the

rapid attenuation of light by water tends to override the

subtle spectral differences between reef habitats (e.g.,

Purkis 2005).

The detailed geomorphological structure maps (Level 3)

were produced in the same way as in the preceding step,

but the imagery was re-segmented on the basis of the Level

2 classes and for each, the expert user applied labels for the

11 Level 3 classes defining seabed character (mud, sand,

rock, etc.; see Table 2) and in the case of reefs, their

morphological type (pinnacle versus aggregate, etc.; see

Table 2). The advantage of conducting this segmentation

based on the Level 2 classes was a radical reduction in

computational overhead since subsets of the overall image

mosaic were segmented separately. As before, the user

manually developed these labels with reference to known

points on the ground visited during fieldwork, and, again,

eCognition was used to classify the unlabeled image

objects based on their similarity to the training set.

Fig. 5 Satellite-derived map products for Moresby Island, Peros

Banhos Atoll. a Location of Peros Banhos Atoll in the Chagos

Archipelago—British Indian Ocean Territory. b Enhanced true-color

WorldView-2 (WV2) image of Peros Banhos, with focus on the reefs

fringing Moresby Island (c). d Bathymetry map created via spectral

derivation from the WV2 imagery calibrated by in situ sonar

soundings. e Corresponding habitat map developed via object-based

mapping in eCognition software. Colors in e correspond to those for

the Level 5 map classes in Table 2. North is top
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Fig. 6 Satellite-derived map products for a series of isolated reef

platforms offshore Île des Pins. a Location of Île des Pins, part of the

Île Loyauté, New Caledonia. b Enhanced true-color WorldView-2

(WV2) image of the reef complex. c Bathymetry map created via

spectral derivation from the WV2 imagery calibrated by in situ sonar

soundings. d Corresponding habitat map developed via object-based

mapping in eCognition software. Colors in d correspond to those for

the Level 5 map classes in Table 2. North is top

Fig. 7 Proportional composition by consolidated habitat class for the

Atlantic (a) and non-Atlantic sites (b). The integers in parentheses

after the class names (black for Atlantic, red for non-Atlantic sites)

are consistent with the class IDs developed in the final column of

Table 2. The habitat maps for the Atlantic sites were characterized by

high proportional coverage of seagrass but low occurrence of reef

substrate. The opposite trend was seen for sites outside the Atlantic
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Fig. 8 Cumulative distribution

functions for the Atlantic

(a) and non-Atlantic (b) sites

charting the probability (y-axis)

of encountering correctly

classified habitat map pixels at

increasing lag distances (x-axis)

from the GPS-constrained

ground-truth points. As a guide

to these plots, for the Galápagos

habitat map there was a 90%

probability of encountering a

correctly classified pixel within

25 m of a ground-truth point

(broken vertical line). For the

Gambier map, meanwhile, there

was a 99% probability at the

same lag distance. Note that the

accuracy of the Atlantic habitat

maps was lower than the non-

Atlantic sites. ‘BAH’ denotes

‘Bahamas’ and ‘FP’ for ‘French

Polynesia.’ Area of shallow-

water habitat (\ 25 m depth)

mapped for each site in

parentheses

Fig. 9 Relationship between habitat map accuracy and map area

(a) and map complexity (b). Map accuracy was quantified by the Tau

coefficient and complexity via the proportion of edge pixels (text for

details). In both plots, the (linear) correlation was computed for

Atlantic (blue broken line) and non-Atlantic sites (brown). No

correlation was observed between map accuracy and area for either

grouping of sites. Only low correlation (R2 = 0.35) exists between

accuracy and map complexity for non-Atlantic sites. These variables

are highly correlated for the Atlantic maps (R2 = 0.99), meanwhile,

but with only three sites in this ocean basin, the relationship should be

not be overly emphasized. Site abbreviations in plots as follows:

Galap. = Galápagos, Inag. and HS = Inagua and Hogsty, N. Cal =

New Caledonia, Solo. = Solomon Isl., Aust. = Austral Isl.,

Gam. = Gambier
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Level 4 biological cover and Level 5 habitat maps

In the final step in the mapping workflow, field observa-

tions of biological cover (termed ‘Level 4’ data) were

convolved with the geomorphology map to yield a map of

habitat (e.g., Figs. 3d, 4d, 5d, 6d). This step was again

achieved via application of the multi-resolution segmen-

tation algorithm (Baatz and Schäpe 2000), but this time, the

Level 3 classes were individually segmented and, again

with reference to field data, the user manually selected

labels for objects characterized by the 12 Level 4 classes of

biological cover. Again, eCognition was used to classify

the remaining unattributed image objects on the basis of

similarity to the training set. As laid out in Table 2, each

object, now classified according to benthic cover, was

attributed with the addition of its zone and geomorpho-

logical structure, which varied by location within the image

set, as defined by the previously created Level 1 and 2

maps, respectively. As an example, an image object

describing a patch reef in the lagoon would be reattributed

as ‘Lagoon–Patch Reef,’ and so on. This reattribution

process delivered the 36 ‘aggregate classes’ of the final

habitat map. To complete the map, boundaries existing

between image objects of the same class were dissolved

such that areas of a single habitat type were encompassed

by a single polygon. At this stage, and again with reference

to the diver observations, the evolving map was examined

by an expert user and any obvious errors corrected in a

process termed ‘contextual editing’ (as originally proposed

by Mumby et al. 1998). To complete the process, the fin-

ished habitat map was exported as an ESRI shapefile for

further analysis in a geographic information system (GIS).

Accuracy assessment

Accuracy assessment of the habitat maps was conducted

using error matrices (Story and Congalton 1986; Congalton

1991) with reference to the 5106 dGPS-positioned seabed

videos captured using a tethered ‘drop’ camera that

remained independent from the map-making workflow.

These drop camera videos had three advantages for the

purposes of accuracy assessment: a large sample size,

wide, consistent coverage across the entirety of the GRE

sites, and independence from the training/labeling process

of map creation. The drop camera dataset suffered a few

limitations as well. First, some habitat types were under-

sampled due to physical constraints navigating the vessel.

Second, the limited field-of-view of the camera created

difficulties discriminating certain habitat classes. Third,

there was some geographic uncertainty in camera location

due to the tether length and the horizontal field-of-view.

The first two of these limitations were addressed by elim-

inating or consolidating certain map classes for the

purposes of accuracy assessment. The third was addressed

by considering the neighborhood around each drop camera

point using a technique we call ‘lagged accuracy.’ It is

important to emphasize that field-operation logistical

planning helped reduce these uncertainties by accounting

for wind, as well as current magnitude and direction, when

deploying the camera and capitalizing on precise boat

handling techniques by the highly skilled skipper. This

allowed us to accurately position and ‘fly’ the tethered

camera over each habitat sampled.

Terrestrial habitat classes were impossible to sample

with the drop camera, for obvious reasons. Thus, the

accuracy of terrestrial habitat classes was not quantitatively

assessed for these maps. Nevertheless, we assume that the

maps are very accurate for a consolidated ‘terrestrial’ class

(i.e., consolidated map Class #1; Table 2), since segment-

ing land versus marine habitats is straightforward with the

infrared channels of satellite imagery. Intertidal and reef

crest classes also proved difficult to sample, due to their

extremely shallow depths at the islands surveyed. Only two

reef crest videos and no intertidal videos were captured.

Thus, the accuracy for intertidal classes was not assessed

and fore reef crest was insufficiently sampled to draw

strong conclusions. To put this limitation in perspective,

however, intertidal and reef crest classes were each found

to have \ 1% of the total number of classified pixels

(Fig. 7). Therefore, their omission from the accuracy

assessment is unlikely to change overall conclusions about

classifier performance.

The limited field-of-view of the drop camera prevented

the discrimination of many of the fine details between

Level 5 classes (Table 2). For instance, the videos were

adequate to classify the seabed in general as a ‘Lagoonal

Reef,’ but the field-of-view was inadequate to resolve

whether a given lagoonal reef was only 10 m in diameter,

or smaller, which would correspond to the Level 5 map

class ‘Lagoon–Coral Bommies,’ versus a much larger

patch, which would be a Level 5 ‘Lagoon–Pinnacle Reef.’

To compensate for this discrepancy in scale between the

satellite data and the ground-truth data, we grouped the 36

Level 5 classes into a smaller number of ‘consolidated

classes’ (Table 2). For most sites around the world, 16

consolidated classes were used, reflecting different com-

binations of geographic zone and substrate. In the Atlantic,

however, geographic zone was not as easy to define, so

additional classes were consolidated in the Atlantic,

reducing the total to seven for those sites.

Overall, producer’s and user’s map accuracies were

computed for each site using the consolidated classes

(Table 2) via the error matrix approach (Story and Con-

galton 1986). In addition, the Kappa (Congalton 1991) and

Tau (Ma and Redmond 1995) coefficients were computed

to quantify the degree to which the accuracy of each map
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was better than random chance. Equal prior probability was

used for calculating Tau because no a priori information on

class probability was used in the hierarchical segmentation.

It should be noted that the accuracies quoted in the error

matrices (Table 3) are for the consolidated classes and

cannot be extrapolated to speak to the accuracy of the

individual classes prior to their consolidation.

Map accuracy as assessed via standard error matrices

does not allow for geographic offsets between the habitat

map and reference data. Such offsets are often unavoidable,

however, and stem from the many vagaries of setting an

exact position on the ocean during fieldwork. Sources of

positional error include GPS inaccuracies, diver observa-

tions not made exactly beneath the position recorded when

entering the water, and the drift of the tethered ‘drop’

camera away from the boat. These offsets might reasonably

be expected to routinely exceed the 1.85 m pixel width of

the WorldView satellite, with the result that the ground-

truth data are not perfectly registered with the habitat map.

Furthermore, with a horizontal field-of-view, as was the

case with the drop camera used for this study, the video

data are directional, which can have just as great an impact

as positional uncertainty. Imagine the camera positioned on

an edge between two classes; the class assigned to that

ground-truth point would depend on the direction in which

the camera was orientated, even if the camera position did

not change. Whereas such offsets might legitimately be

considered as inaccuracies for habitat maps produced on a

local scale, we consider them to be acceptable when

mapping across hundreds of thousands of sq. km of Earth’s

remotest reef systems. Thus, we wanted a way to assess

accuracy that would account for uncertainty in the relative

position of ground truth to satellite data.

To sensibly address geographic uncertainty in camera

location, we used a metric called ‘lagged accuracy’ which,

for each ground-truth point, collates the cumulative prob-

ability of encountering pixels mapped as the same class

attributed to the assessment point, for lag distances

between 0 and 300 m offset from that point, in all Carte-

sian directions. Providing that map pixels of the class

sought exist within the specified lag distance around the

accuracy assessment point, the cumulative probability of

encounter will rise as a function of increasing lag, with the

rate of that rise dictated by the density of pixels of that

class in the queried portion of the habitat map. Of course, it

is unreasonable to take the existence of a map pixel within

the search radius with the same class assignment of that of

the accuracy assessment point to justify scoring the map as

accurate. Indeed, for large lag distances, the correct

assignment will be recognized even if the queried habitat

map is random. Hence, it is necessary to set sensible

thresholds in both lag distance and cumulative probability

that might rationally indicate that a positioning error has

precluded an exact match at the location of the accuracy

assessment point. While there are no precise answers, we

felt 25 m was a sensible threshold for the accuracy of a

regional-scale map used to support marine spatial planning.

Patterns of habitat classification accuracy

To explore possible causes of habitat map error, the per-

site Tau coefficients (a measure of map accuracy) were

cross-plotted against mapped area and the complexity of

the habitat maps (Fig. 9). Doubtless, the KSLOF-GRE

dataset allows for all sorts of analysis of the spatial patterns

among reef systems around the globe, and it is our hope

that it will be used for such in the future. The present goal,

however, was simply to check for broad and systematic

patterns related to habitat classification accuracy.

There are many ways to quantify scene complexity. One

of the simplest is to count the proportion of edge pixels,

i.e., those which border a different class. Edge pixels are

good metrics for assessing habitat classification because

they are affected by a combination of class variety, spatial

arrangement, and pixel mixing (Heydari and Mountrakis

2018). Furthermore, accuracy has sometimes been shown

to decrease with increasing proportion of edge pixels

(Heydari and Mountrakis 2018). Checking whether this

pattern held for the KSLOF-GRE was valuable because

datasets with a sufficient number of scenes with varying

complexity to test this are rare.

Results

The KSLOF generated benthic habitat maps and bathy-

metry over a total of 65,000 sq. km during the 10 yrs of the

Global Reef Expedition. Examples of these products are

reproduced here for the Pacific and Indian Oceans (Figs. 3,

4, 5, 6). The entire digital dataset can be explored on the

KSLOF GIS data portal (https://maps.lof.org/lof—accessed

11/7/2018). As demonstrated by Figs. 3, 4, 5, and 6, the

object-based workflow used for mapping seabed character

scaled to tens of thousands of sq. km, while maintaining

high spatial fidelity.

Sites in the Atlantic were comprised of \ 5% reef

habitat, nearly 25% hardbottom, and 29% as seagrass

(Fig. 7). Non-Atlantic sites, by contrast, contained \ 1%

seagrass and [ 15% reef habitat. Even though biogeo-

graphic differences in benthic character were not the sub-

ject of this paper, these statistics underline the diversity of

sites mapped using a common workflow across the

KSLOF-GRE.

A quantitative assessment of classification error

(Table 3) revealed the overall accuracy of the maps

developed for the three Atlantic sites to be approximately
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10% lower than that for the ten non-Atlantic sites (81% vs.

90%, respectively). The Kappa and Tau coefficients dif-

fered by nearly 20% between the Atlantic and non-Atlantic

sites, however. Kappa and Tau both penalize the Atlantic

results more than the other sites because of the fewer

number of consolidated classes used to conduct the accu-

racy assessment in the Atlantic (4) versus elsewhere (9).

The producer’s accuracies for the habitat classes in the

Atlantic maps were approximately 70%, save for ‘Hard-

bottom,’ which was 94% (Table 3). Much of this discrep-

ancy arose from confusion between macroalgal stands and

seagrass meadows which occupied large swaths of the 6000

sq. km Cay Sal Bank (Fig. 1e). The user’s accuracies for

the Atlantic sites were generally higher than the producer’s

accuracies, ranging from 76% (Sediment with Macroalgae)

to 89% (Reef).

Both producer’s and user’s accuracies for the 13 non-

Atlantic sites were considerably higher than for the

Atlantic. An outlier here was the class ‘Reef Crest Hard-

bottom’ (Producer’s Accuracy = 50%, User’s = 100%)

which should be ignored as it was validated by a single

ground-truth point, a function of the difficulty of safely

navigating a small vessel across the shallow reef crest.

Withstanding this class, the median producer’s accuracy

was 92% and user’s accuracy was 89%, both reassuringly

high values.

Cumulative distribution functions describing the lagged

accuracy of the three Atlantic (Fig. 8a) and ten non-At-

lantic sites (Fig. 8b) echoed the trend obvious in the error

matrices (Table 3). The habitat maps for the Atlantic had

lower accuracies than those developed for non-Atlantic

sites. Maps created for Colombia and the Cay Sal Bank

(Bahamas) were the worst performers here, with only a

75% probability of encountering a correctly classified pixel

within 25 m of a ground-truth point (Fig. 8a). The maps for

Great and Little Inagua, and Hogsty, were * 10% better,

but still underperformed the non-Atlantic sites. For these,

the probability of encountering a correctly classified pixel

within 25 m of the ground-truth data exceeded 90% for the

Solomon Islands, the four mapped archipelagos in French

Polynesia (Australs, Gambier, Society, and Tuamotu), and

the Cook Islands. The probability at the same lag distance

for the remaining sites (Tonga, Fiji, New Caledonia, and

Galápagos) exceeded 85%. By a lag distance of 50 m,

which is likely on the upper limit of what is useful for a

regional-scale map product, the probability of encountering

a correctly identified pixel exceeded 90% for all sites

except Colombia and the Cay Sal Bank.

Map accuracy and area were uncorrelated for both the

Atlantic and non-Atlantic sites (Fig. 9a). For the latter

grouping, however, a low level of correlation (R2 = 0.35)

was observed between accuracy and complexity (Fig. 9b).

The correlation between these parameters was strong for

the three Atlantic sites (R2 = 0.99), but the result is unre-

liable because of the small number of sites in this grouping.

Discussion

Regional-scale coral reef mapping from remote sensing has

a role to play in the widening portfolio of intervention

measures that are being mobilized against the reef crisis.

Of these measures, the establishment of large-scale marine

protected areas (MPAs) has been particularly effective

(Sheppard et al. 2012; Toonen et al. 2013; Wilhelm et al.

2014). The Big Ocean Network (https://bigoceanmanagers.

org—accessed 10/25/2018) provides a rule of thumb as to

what constitutes ‘large scale,’ with their 17 member sites

ranging in size from approximately 150,000 sq. km to

nearly 2000,000 sq. km. Beyond large size, the success of

an MPA rises if it is nested within a network of ecologi-

cally connected protected areas, which as a collective

encompass a full range of critical habitats (Graham et al.

2008; Gleason et al. 2010). Designing ecological connec-

tivity into MPA networks, however, requires careful con-

sideration of available information on habitat distribution,

larval dispersal patterns, adult movement ranges, and

oceanography (Botsford et al. 2001; Gaines et al. 2003;

Palumbi 2004). Marine spatial planning—MSP—(Douvere

2008) is a central component to balancing these and other

considerations in the design of MPAs. Habitat and bathy-

metry maps lie at the base of the MSP workflow and are

therefore critical to its success. With MPAs becoming ever

larger, it is imperative that the mapping keeps pace.

Covering 65,000 sq. km and taking nearly a decade to

complete, the KSLOF-GRE is the largest coherent reef-

mapping program accomplished to date. The results from

the GRE are presently being used to train the next gener-

ation of image classifiers which hold the potential to deli-

ver truly global audits of reef status through time. As

developed by Chirayath and Earle (2016) and Chirayath

and Li (2019), the delineation of reef habitat via machine

learning holds particular promise. Further, the goal to ‘map

once, use many ways’ underpins and justifies the KSLOF-

GRE and the archiving of its outputs in the public domain.

As the expedition was planned, the Foundation was

agnostic to the degree to which each host nation was

conducting MSP. Instead, the philosophy was to deploy the

KSLOF-GRE seafloor mapping program to stimulate the

creation of national and regional databases and information

systems containing essential coral reef environmental data,

else contribute to these if they already existed.

Accuracy of the KSLOF-GRE habitat maps, as com-

puted with the traditional error matrix approach (Story and

Congalton 1986), varied from * 70 to 90%. The technique

used here of computing lagged accuracy, in addition to a
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traditional error matrix, resulted in cumulative probability

functions for each map class (Fig. 8) which grant the map

user an alternative means of judging map quality. In some

ways, lagged accuracy conveyed the same information as

overall accuracy computed using a traditional error matrix

approach. For example, the error matrices showed that

Atlantic sites had lower overall accuracy, in general, than

non-Atlantic sites (Table 3). This same result was also

clear from plots of lagged accuracy (Fig. 8). In other ways,

however, lagged accuracy complemented the error matrix

approach with new information about the spatial distribu-

tion of errors. For example, the sites with the steepest

slopes of the lagged accuracy curve in the 0–25 m spatial

scale had the highest fraction of edge pixels (Tuamotu,

Gambier, and Society). Conversely, those with the shal-

lowest slope over that range had the fewest edge pixels

(Colombia, Cay Sal, Galápagos). Thus, information about

the relationships among patchiness, scale, and accuracy

was contained in the lagged accuracy cumulative distri-

butions. This is a topic to be examined further in the future.

Lagged accuracy also provides a thematic analog to

familiar specifications for spatial accuracy. Horizontal

spatial data accuracy is typically reported in the following

form: ‘X meters (feet) horizontal accuracy at the 95%

confidence level’ (FGDC 1998). One could use lagged

accuracy to report a thematic accuracy in an analogous

form, for example: ‘X% thematic overall accuracy within

Y meters horizontal lag.’ Users could specify an accept-

able spatial lag, Y, according to their needs. A manager

planning marine protected areas across one million square

km of ocean might acceptably tolerate a larger Y than, say,

an engineer planning a dredging operation.

All KSLOF-GRE sites except Cay Sal and Colombia

were found to have at least 85% thematic overall accuracy

within 25 meters horizontal lag; Cay Sal and Colombia had

75% thematic overall accuracy within 25 m horizontal lag.

If faced with developing a network of MPAs across hun-

dreds of thousands of sq. km of tropical ocean, as has

already been accomplished by the 17 member sites of the

Big Ocean Network, access to maps which correctly

position the occurrence of critical habitats such as coral

reefs, seagrass meadows, and mangrove stands to within

25 m would be of huge benefit, especially considering that

most of these protected areas were defined without any

precise knowledge of the locations, size, and architecture

of benthic habitat throughout their range.

The fact that, regardless of which accuracy metric was

used, the Atlantic sites were * 10% less accurate than

those in the Pacific and Indian oceans was surprising

because the diversity of seabed character is considerably

lower in the Atlantic, and therefore fewer classes were used

to map these sites. In contrast, several previous studies

have shown that increasing the number of habitat classes

decreases map accuracy (e.g., Andréfouët et al. 2003). One

potential explanation for this inconsistency can be linked to

the workflow used to produce the maps. Our workflow

relied on a bathymetric map derived from satellite imagery

to guide development of a Level 1 map of reef zones which

was subsequently evolved to a Level 2 map of major

geomorphic structure (Fig. 2). The sites considered outside

the Atlantic were well poised for this approach as they

were predominantly atolls with well-defined zones (fore

reef, reef crest, lagoon, etc.). Once the seascape has been

split into zones, the burden of mapping the habitats con-

tained within them was eased because a limited number of

benthic cover types were prescribed in advance for each

zone (as detailed in Table 2). The Atlantic sites mapped by

KSLOF-GRE were challenging to partition into reef zones,

except for the diminutive Hogsty Reef, which is only 100

sq. km in area but atollic in morphology. The Level 1 zone

map for the 5500 sq. km Cay Sal Bank, however, was more

poorly defined because Cay Sal lacks platform-margin

reefs and takes the form of a sediment-dominated flat-

topped carbonate bank (Purkis et al. 2014). Thus, the

Atlantic maps placed greater emphasis on correctly

ascribing benthic cover across a large area, from a large

quantity of potential biotic classes. We anticipate that this

disjoint in our workflow explains the reduced accuracy of

the Atlantic habitat maps. This said, the 81% overall

accuracy for Atlantic maps falls in line with, or exceeds

comparable studies conducted at much smaller spatial

scales (e.g., Phinn et al. 2012; Zhang et al. 2013; Collin

et al. 2014; Hedley et al. 2016; Roelfsema et al. 2018) and

is therefore not deemed to be a limiting factor.

A regression of map accuracy and area yielded no

(linear) correlation in the Atlantic and at most a slight

inverse relationship for non-Atlantic sites (Fig. 9a). The

lack of a relationship was reassuring and indicated that the

workflow was not confounded by very large sites. The

positive correlation observed between map accuracy and

map complexity (Fig. 9b) was counterintuitive. Rather than

accuracy decreasing with increasing map complexity, as

previously documented for pixel-based approaches to

classification (Andréfouët et al. 2003; Heydari and Moun-

trakis 2018), our object-based approach yielded increasing

accuracy for more complex benthic systems. The expla-

nation for this result might be due to pixel-based versus

object-based classifiers, or due to the zone-based classifi-

cation scheme used. Note, however, that the correlation

between accuracy and complexity was high for the Atlantic

sites but rather modest for the non-Atlantic sites. Thus, we

feel this result can be most easily interpreted as another

manifestation of the lowered performance of our workflow

in the Atlantic sites where reef morphology is less well

developed than outside the Atlantic.
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Throughout our mapping endeavors, we found that some

habitat types tended to be misclassified more often than

others. For example, in the Atlantic, sediment with

macroalgae was occasionally misclassified as hardbottom.

Confusion existed too between seagrass and either sedi-

ment with macroalgae or hardbottom. Such errors are to be

anticipated because of the spectral similarity of these

classes (Hochberg and Atkinson 2003; Purkis 2005). For

non-Atlantic sites, lagoonal sediment with macroalgae was

sometimes misclassified as lagoonal reef, confusion which

might variably be attributed to their spectral and textural

similarity and the fact that turbidity in restricted atoll

lagoons can be elevated (Kjerfve 1986). Forereef sediment

with macroalgae was occasionally wrongly mapped as

forereef hardbottom. In this case, the rapid downslope

increase in water depth can likely be implicated as near-

vertical morphology is challenging to image because of

light attenuation and shadowing (Jay et al. 2017). Ways to

more routinely separate live coral from macroalgae in

multispectral imagery are of heightening importance given

the large-scale regime shift of reefs to algal-dominated

states (Graham et al. 2015; Hughes et al. 2017; Hempson

et al. 2018).

The products discussed in this manuscript, and the

spatial breath of coverage the KSLOF-GRE achieved,

provide a major contribution to the science and manage-

ment of coral reefs, and the ecosystem services they pro-

vide. Studies of this magnitude provide critical baseline

data to benchmark the condition of reefs now, thereby

enabling; (1) quantification of the rate and direction of

future change at seascape scales, (2) enhanced under-

standing of how reefs should be managed to ensure their

sustainability, and (3) documentation of how they change

once management interventions are in place. Many coun-

tries visited during the GRE are Small Island Developing

States, whose economies are wholly dependent on the

submerged marine resources located within their EEZ. As

such, resource management at the national level is critical

to the local economies of these nations. In addition, most of

the KSLOF-GRE sites are home to isolated villages of

people (i.e., monthly ferry service and no airport) who are

truly dependent on their adjacent reef environment for food

security (Béné et al. 2016). Dissemination of the KSLOF-

GRE mapping products and survey data to the host coun-

tries and communities provides the greatest opportunity for

their use at both the national and local levels.

Coral reefs are icons of environmentalism because they

have degraded so rapidly with causes easily linked to cli-

mate change and other human pressures. Despite iconic

status, though, Earth’s reefs have not been systematically

mapped with the intensity of, for instance, tropical defor-

estation. This deficit means that even fundamental ques-

tions such as area covered by reefs globally are unknown.

This includes the inability to formally assess coral reef

health and status at country level. Though by no means

covering every reef worldwide, the KSLOF-GRE covers a

meaningful proportion of key reef provinces around the

world and provides a baseline of their health prior to the

2017 mass bleaching event. According to Spalding et al.

(2001), Earth’s reefs cover nearly 285,000 sq. km, a fig-

ure which would suggest that the KSLOF-GRE mapping,

which covers 65,000 sq. km, has characterized one-fifth of

them. This proportion is tenuous, however, as the true

global reef area is poorly constrained, not least because of

the rarity of large-scale maps—a deficit which motivated

this study. We hope that our large-scale maps will open

new vistas of potential enquiry and motivate others to work

toward a global reef audit. Many aspects of the reef crisis

are presently intractable. We show that accurately mapping

bathymetry and habitat at regional scale is not one of them.
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Baatz M, Schäpe A (2000) Multiresolution segmentation: an

optimization approach for high quality multi-scale image

segmentation. Angewandte Geographische Informationsverar-

beitung XII 58. Wichmann-Verlag, Heidelberg, pp. 12–23

Barrat A, director (2013) Sharks of the coral canyon. Living Oceans

Foundation

Barrat A, director (2014) Mapping the blue. Living Oceans

Foundation

Barrat A, director (2015) Coral reefs: trouble in paradise. Living

Oceans Foundation

Barrat A, director (2016) An ocean mystery: the missing catch. Living

Oceans Foundation

Bellwood DR, Hughes TP, Folke C, Nyström M (2004) Confronting

the coral reef crisis. Nature 429:827
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